Ultraviolet Spectrum and Conformation of 1-Azabicyclo[3,3,1]nonan-3-one

By M. T. HUGHES and J. HUDEC*

(Chemistry Department, The University, Southampton, SO9 5HN)

Summary 1-Azabicyclo[3,3,1]nonan-3-one was synthesized; its u.v. and i.r. spectra confirm the conclusions enunciated in the preceding communication.

It has been suggested that the intensification of the $n \to \pi^*$ transition of α -axial halogeno-(Cl, Br, I)cyclohexanones is

Our empirical analysis of several α - and β -amino-ketones predicts that the enhancement of the $n \to \pi^*$ transition should arise when the lone pair on the α -axial N (or an equivalent position) is *trans*-diaxial to a C_{α} -C=O bond.⁶ At the same time, we should observe a $\pi \to \pi^*$ band at lower wavelengths. In order to test these predictions we

				U.v. spec	tra of (1)				
H ₂ O		EtOH		n-Hexane		Vapour		CHCl ₃	
λmax	e	λ_{max}	e	λ_{max}	€	λ_{max}	ε	λ_{max}	ČΕ
311 235ª	52	314 225ª	44	344 330 317 235 ⁸ 214	33 55 53	325 313 243 ^b 215	200° 2000°	321	61
			U.v	. spectra of	(1) hydroch	loride			
282	19	290	19	-	_	-			-
				N.m.r. spe	ectra of (1)				

	CDC13	CCI4	$CDCl_3 + CF_3CO_2H$
JAB	17·4 Hz	17·2 Hz	17·1 Hz
Jсъ	17.0		17.2
JCE	ca. 5.5		ca. 5·5

M.p. 124— 126° (uncorr.), (123— $125^{\circ7}$), 1713 cm⁻¹ (CHCl₃).

^a Shoulder. ^b λ_{\max} is for a resolved band and not for the shoulder.

^c These values were calculated on the assumption that the intensity of the $n \to \pi^*$ transition in vapour is 50.

due to the overlap of the *n*-orbital of the halogen simultaneously with the carbonyl p- and π^* -orbitals.¹

A similar treatment was suggested for some $\beta\gamma$ -unsaturated ketones² when the *n*-orbital was replaced by the π -orbital of the double bond. Consequently the new transition that appeared at lower wavelengths (214-245 nm) was described as a $\pi \to \pi^*$ charge transfer.^{2,3} Although this treatment was substantiated theoretically,⁴ a later one suggested that the enhancement arises from coupling of $\pi \to \pi^*$ and $n \to \pi^*$ transitions and that the low-wavelength band arises by splitting of the $\pi \to \pi^*$ transition, one part of which is red-shifted.⁵

synthesized 1-azabicyclo[3,3,1]nonan-3-one $(1)^7$ and measured its spectra (Table).

It can be seen that the spectra support our expectations,

even though the intensities of the $n \to \pi^*$ and the $\pi \to \pi^*$ transitions are not as large as we expected. The reason for this can be gleaned from J_{gem} values in the n.m.r. spectra which indicate a very considerable flattening of the carbonyl-carrying ring.8 We are currently engaged in overcoming these drawbacks.

Our work suggests that the earlier theoretical treatments^{4,5} of the pertubation of the $n \to \pi^*$ transition by

a-substituents are wrong as none of them would have predicted the spectral behaviour of (1). The consequence of our results to the concepts of neighbouring-group participation, and to the rates of solvolysis of the pseudo equatorial toluene-p-sulphonates derived from (1), will be discussed elsewhere.

(Received, April 21st, 1970; Com. 585.)

¹ R. C. Cookson, J. Chem. Soc., 1954, 282; R. C. Cookson and S. H. Dandegaonker, J. Chem. Soc., 1955, 352. ² R. C. Cookson and N. Wariyar, J. Chem. Soc., 1956, 2302; R. C. Cookson and S. MacKenzie, Proc. Chem. Soc., 1961, 423; R. C. Cookson and J. Hudee, J. Chem. Soc., 1962, 429; A. Moskowitz, K. Mislow, M. A. W. Glass, and C. Djerassi, J. Amer. Chem. Soc., 1963, 17, 20. ³ R. C. Cookson and B. Lowin, Chem. and Ind. 1956, 984; S. Winstein, L. de Vries, and R. Orloski, L. Amer. Chem. Soc., 1961, 83

³ R. C. Cookson and N. Lewin, Chem. and Ind., 1956, 984; S. Winstein, L. de Vries, and R. Orloski, J. Amer. Chem. Soc., 1961, 83, 2020.

⁴ H. Labhard and G. Wagniere, Helv. Chim. Acta, 1959, 42, 2219.

⁵ A. Moskowitz, A. E. Hansen, L. C. Forster, and K. Rosenbeck, Biopolymers, Symposia No. 1, 1964, 75; R. C. Cookson, Proc. Roy. Soc., 1967, A, 297, 27.

⁶ J. Hudec, preceding communication.

⁷ M. J. Martell, jun., and T. O. Soine, J. Pharm. Sci., 1963, 52, 331.

⁸ M. Barfield and D. M. Grant, J. Amer. Chem. Soc., 1963, 85, 1899; R. C. Cookson, T. A. Crabb, J. J. Frankel, and J. Hudec, Tetrahedron, Suppl. 7, 1966, 355.